Hai, saya Dmitry Logvinenko - Insinyur Data dari Departemen Analisis dari Grup Perusahaan Beruntung.
Saya akan memberi tahu Anda tentang alat hebat untuk mengembangkan proses ETL - Apache Airflow. Tapi Airflow sangat serbaguna dan multifaset sehingga Anda harus melihatnya lebih dekat bahkan jika Anda tidak berurusan dengan aliran data, tetapi harus meluncurkan proses apa pun secara berkala dan memantau pelaksanaannya.
Dan ya, saya tidak hanya akan memberi tahu, tetapi juga menunjukkan: program ini memiliki banyak kode, tangkapan layar, dan rekomendasi.
Apa yang biasanya Anda lihat saat meng-google kata Airflow / Wikimedia Commons
Daftar Isi
- pengantar
- Bagiannya dasar, praktis (dan sedikit teoretis)
- Bagian terakhir, referensi dan informasi
- Tautan
pengantar
Apache Airflow sama seperti Django:
- ditulis dengan Python,
- ada panel admin yang luar biasa,
- dapat diperluas tanpa batas,
- hanya lebih baik, dan dibuat untuk tujuan yang sama sekali berbeda, yaitu (seperti yang tertulis sebelumnya kata):
- ( Celery/Kubernetes )
- workflow Python-
- API , ( ).
Apache Airflow :
- ( SQL Server PostgreSQL, API , 1) DWH ODS ( Vertica Clickhouse).
-
cron
, ODS, .
32 50 GB . Airflow :
- 200 ( workflows, ),
- 70 ,
- ( ) .
, , , ΓΌber-, :
SQL Serverβ, 50 β , , ( , --), Orders ( ). , (-, -, ETL-) , , Vertica.
!
, ( )
( )
, SQL
- , ETL- aka :
Informatica Power Center β , , , . 1% . ? , -, - . -, , ---. , Airbus A380/, .
, 30
SQL Server Integration Server β . : SQL Server , ETL- - . : , β¦ , .
dtsx
( XML ) , ? , ? , , . , , :
. SSIS-...
β¦ . Apache Airflow.
, ETL- β Python-, . , Python- - 13β .
, , Airflow, , Celery , .
, docker-compose.yml
:
- Airflow: Scheduler, Webserver. Flower Celery- (
apache/airflow:1.10.10-python3.7
, ); - PostgreSQL, Airflow ( , . .), Celery β ;
- Redis, Celery;
- Celery worker, .
-
./dags
. , .
- ( ), - . https://github.com/dm-logv/airflow-tutorial.
version: '3.4'
x-airflow-config: &airflow-config
AIRFLOW__CORE__DAGS_FOLDER: /dags
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__CORE__FERNET_KEY: MJNz36Q8222VOQhBOmBROFrmeSxNOgTCMaVp2_HOtE0=
AIRFLOW__CORE__HOSTNAME_CALLABLE: airflow.utils.net:get_host_ip_address
AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgres+psycopg2://airflow:airflow@airflow-db:5432/airflow
AIRFLOW__CORE__PARALLELISM: 128
AIRFLOW__CORE__DAG_CONCURRENCY: 16
AIRFLOW__CORE__MAX_ACTIVE_RUNS_PER_DAG: 4
AIRFLOW__CORE__LOAD_EXAMPLES: 'False'
AIRFLOW__CORE__LOAD_DEFAULT_CONNECTIONS: 'False'
AIRFLOW__EMAIL__DEFAULT_EMAIL_ON_RETRY: 'False'
AIRFLOW__EMAIL__DEFAULT_EMAIL_ON_FAILURE: 'False'
AIRFLOW__CELERY__BROKER_URL: redis://broker:6379/0
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@airflow-db/airflow
x-airflow-base: &airflow-base
image: apache/airflow:1.10.10-python3.7
entrypoint: /bin/bash
restart: always
volumes:
- ./dags:/dags
- ./requirements.txt:/requirements.txt
services:
# Redis as a Celery broker
broker:
image: redis:6.0.5-alpine
# DB for the Airflow metadata
airflow-db:
image: postgres:10.13-alpine
environment:
- POSTGRES_USER=airflow
- POSTGRES_PASSWORD=airflow
- POSTGRES_DB=airflow
volumes:
- ./db:/var/lib/postgresql/data
# Main container with Airflow Webserver, Scheduler, Celery Flower
airflow:
<<: *airflow-base
environment:
<<: *airflow-config
AIRFLOW__SCHEDULER__DAG_DIR_LIST_INTERVAL: 30
AIRFLOW__SCHEDULER__CATCHUP_BY_DEFAULT: 'False'
AIRFLOW__SCHEDULER__MAX_THREADS: 8
AIRFLOW__WEBSERVER__LOG_FETCH_TIMEOUT_SEC: 10
depends_on:
- airflow-db
- broker
command: >
-c " sleep 10 &&
pip install --user -r /requirements.txt &&
/entrypoint initdb &&
(/entrypoint webserver &) &&
(/entrypoint flower &) &&
/entrypoint scheduler"
ports:
# Celery Flower
- 5555:5555
# Airflow Webserver
- 8080:8080
# Celery worker, will be scaled using `--scale=n`
worker:
<<: *airflow-base
environment:
<<: *airflow-config
command: >
-c " sleep 10 &&
pip install --user -r /requirements.txt &&
/entrypoint worker"
depends_on:
- airflow
- airflow-db
- broker
:
- puckel/docker-airflow β . , .
- Airflow
airflow.cfg
, ( ), . - , production-ready: heartbeats , . , .
- , :
- , .
- β .
:
$ docker-compose up --scale worker=3
, , -:
- Airflow: http://127.0.0.1:8080/admin/
- Flower: http://127.0.0.1:5555/dashboard
«», :
Scheduler β Airflow, , , : , , .
, , (, , ) -
run_duration
β . .
DAG ( «») β Β« Β», , (. ) Package SSIS Workflow Informatica.
, .
DAG Run β ,
execution_date
. ( , , ).
Operator β , - . :
- action,
PythonOperator
, () Python-; - transfer, , ,
MsSqlToHiveTransfer
; - sensor - .
HttpSensor
, ,GoogleCloudStorageToS3Operator
. : Β«? !Β» , . , .
- action,
Task β .
Task instance β - , - ( ,
LocalExecutor
CeleryExecutor
), (. . β ), .
, , .
, :
from datetime import timedelta, datetime
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from commons.datasources import sql_server_ds
dag = DAG('orders',
schedule_interval=timedelta(hours=6),
start_date=datetime(2020, 7, 8, 0))
def workflow(**context):
print(context)
for conn_id, schema in sql_server_ds:
PythonOperator(
task_id=schema,
python_callable=workflow,
provide_context=True,
dag=dag)
:
- ;
sql_server_ds
βList[namedtuple[str, str]]
Airflow Connections ;dag
β ,globals()
, Airflow . :
-
orders
β -, - , ,
- , 6 (
timedelta()
cron
-0 0 0/6 ? * * *
, β@daily
);
-
workflow()
, . .- :
- ;
-
PythonOperator
,workflow()
. ( ) .provide_context
,**context
.
. :
- -,
- , ( Airflow, Celery ).
, .
?
docker-compose.yml
requirements.txt
.
:
β task instances, .
, :
, , β . β .
,./dags
, βgit
Gitlab, Gitlab CImaster
.
Flower
-, , - β Flower.
-:
, :
:
β :
, , .
β . Airflow , .
task instances.
, :
, Clear . , , - , .
, β Airflow. , : Browse/Task Instances
:
( , ):
,
DAG, update_reports.py
:
from collections import namedtuple
from datetime import datetime, timedelta
from textwrap import dedent
from airflow import DAG
from airflow.contrib.operators.vertica_operator import VerticaOperator
from airflow.operators.email_operator import EmailOperator
from airflow.utils.trigger_rule import TriggerRule
from commons.operators import TelegramBotSendMessage
dag = DAG('update_reports',
start_date=datetime(2020, 6, 7, 6),
schedule_interval=timedelta(days=1),
default_args={'retries': 3, 'retry_delay': timedelta(seconds=10)})
Report = namedtuple('Report', 'source target')
reports = [Report(f'{table}_view', table) for table in [
'reports.city_orders',
'reports.client_calls',
'reports.client_rates',
'reports.daily_orders',
'reports.order_duration']]
email = EmailOperator(
task_id='email_success', dag=dag,
to='{{ var.value.all_the_kings_men }}',
subject='DWH Reports updated',
html_content=dedent(""" , """),
trigger_rule=TriggerRule.ALL_SUCCESS)
tg = TelegramBotSendMessage(
task_id='telegram_fail', dag=dag,
tg_bot_conn_id='tg_main',
chat_id='{{ var.value.failures_chat }}',
message=dedent("""\
, , {{ dag.dag_id }}
"""),
trigger_rule=TriggerRule.ONE_FAILED)
for source, target in reports:
queries = [f"TRUNCATE TABLE {target}",
f"INSERT INTO {target} SELECT * FROM {source}"]
report_update = VerticaOperator(
task_id=target.replace('reports.', ''),
sql=queries, vertica_conn_id='dwh',
task_concurrency=1, dag=dag)
report_update >> [email, tg]
- ? : , ; , ; , ( , ).
:
from commons.operators import TelegramBotSendMessage
β , , . ( );default_args={}
β ;to='{{ var.value.all_the_kings_men }}'
βto
, Jinja email-,Admin/Variables
;trigger_rule=TriggerRule.ALL_SUCCESS
β . , ;tg_bot_conn_id='tg_main'
βconn_id
,Admin/Connections
;trigger_rule=TriggerRule.ONE_FAILED
β Telegram ;task_concurrency=1
β task instances . ,VerticaOperator
( );report_update >> [email, tg]
βVerticaOperator
, :
- , . Tree View :
β .
β Jinja-, . , :
SELECT
id,
payment_dtm,
payment_type,
client_id
FROM orders.payments
WHERE
payment_dtm::DATE = '{{ ds }}'::DATE
{{ ds }}
execution_date
YYYY-MM-DD
: 2020-07-14
. , ( Tree View), .
Rendered -. :
:
, , , .
, ( ). Admin/Variables
:
, :
TelegramBotSendMessage(chat_id='{{ var.value.failures_chat }}')
, JSON. JSON-:
bot_config
{
"bot": {
"token": 881hskdfASDA16641,
"name": "Verter"
},
"service": "TG"
}
: {{ var.json.bot_config.bot.token }}
.
. : Admin/Connections
, / . :
( , ), ( tg_main
) β , Airflow ( - β ), .
: BaseHook.get_connection()
, , ( Round Robin, Airflow).
Variables Connections, , , : , β Airflow. C , , , UI. β - , () .
β . Airflow β . , JiraHook
Jira ( -), SambaHook
smb
-.
, , TelegramBotSendMessage
commons/operators.py
:
from typing import Union
from airflow.operators import BaseOperator
from commons.hooks import TelegramBotHook, TelegramBot
class TelegramBotSendMessage(BaseOperator):
"""Send message to chat_id using TelegramBotHook
Example:
>>> TelegramBotSendMessage(
... task_id='telegram_fail', dag=dag,
... tg_bot_conn_id='tg_bot_default',
... chat_id='{{ var.value.all_the_young_dudes_chat }}',
... message='{{ dag.dag_id }} failed :(',
... trigger_rule=TriggerRule.ONE_FAILED)
"""
template_fields = ['chat_id', 'message']
def __init__(self,
chat_id: Union[int, str],
message: str,
tg_bot_conn_id: str = 'tg_bot_default',
*args, **kwargs):
super().__init__(*args, **kwargs)
self._hook = TelegramBotHook(tg_bot_conn_id)
self.client: TelegramBot = self._hook.client
self.chat_id = chat_id
self.message = message
def execute(self, context):
print(f'Send "{self.message}" to the chat {self.chat_id}')
self.client.send_message(chat_id=self.chat_id,
message=self.message)
, Airflow, :
-
BaseOperator
, Airflow- ( ) -
template_fields
, Jinja . -
__init__()
, , . - .
-
TelegramBotHook
, -. - ()
BaseOperator.execute()
, Airfow , β , . (, ,stdout
stderr
β Airflow , , , .)
, commons/hooks.py
. , :
from typing import Union
from airflow.hooks.base_hook import BaseHook
from requests_toolbelt.sessions import BaseUrlSession
class TelegramBotHook(BaseHook):
"""Telegram Bot API hook
Note: add a connection with empty Conn Type and don't forget
to fill Extra:
{"bot_token": "YOuRAwEsomeBOtToKen"}
"""
def __init__(self,
tg_bot_conn_id='tg_bot_default'):
super().__init__(tg_bot_conn_id)
self.tg_bot_conn_id = tg_bot_conn_id
self.tg_bot_token = None
self.client = None
self.get_conn()
def get_conn(self):
extra = self.get_connection(self.tg_bot_conn_id).extra_dejson
self.tg_bot_token = extra['bot_token']
self.client = TelegramBot(self.tg_bot_token)
return self.client
, , :
- , β :
conn_id
; - :
get_conn()
, -extra
( JSON), ( !) Telegram-:{"bot_token": "YOuRAwEsomeBOtToKen"}
. -
TelegramBot
, .
. c TelegramBotHook().clent
TelegramBotHook().get_conn()
.
, Telegram REST API, python-telegram-bot
sendMessage
.
class TelegramBot:
"""Telegram Bot API wrapper
Examples:
>>> TelegramBot('YOuRAwEsomeBOtToKen', '@myprettydebugchat').send_message('Hi, darling')
>>> TelegramBot('YOuRAwEsomeBOtToKen').send_message('Hi, darling', chat_id=-1762374628374)
"""
API_ENDPOINT = 'https://api.telegram.org/bot{}/'
def __init__(self, tg_bot_token: str, chat_id: Union[int, str] = None):
self._base_url = TelegramBot.API_ENDPOINT.format(tg_bot_token)
self.session = BaseUrlSession(self._base_url)
self.chat_id = chat_id
def send_message(self, message: str, chat_id: Union[int, str] = None):
method = 'sendMessage'
payload = {'chat_id': chat_id or self.chat_id,
'text': message,
'parse_mode': 'MarkdownV2'}
response = self.session.post(method, data=payload).json()
if not response.get('ok'):
raise TelegramBotException(response)
class TelegramBotException(Exception):
def __init__(self, *args, **kwargs):
super().__init__((args, kwargs))
β :TelegramBotSendMessage
,TelegramBotHook
,TelegramBot
β , , Open Source.
, . , ...
- ! ? !
- ?
, - ? SQL Server Vertica , , !
, - . .
:
,- SQL Server
- Vertica
, , docker-compose.yml
:
version: '3.4'
x-mssql-base: &mssql-base
image: mcr.microsoft.com/mssql/server:2017-CU21-ubuntu-16.04
restart: always
environment:
ACCEPT_EULA: Y
MSSQL_PID: Express
SA_PASSWORD: SayThanksToSatiaAt2020
MSSQL_MEMORY_LIMIT_MB: 1024
services:
dwh:
image: jbfavre/vertica:9.2.0-7_ubuntu-16.04
mssql_0:
<<: *mssql-base
mssql_1:
<<: *mssql-base
mssql_2:
<<: *mssql-base
mssql_init:
image: mio101/py3-sql-db-client-base
command: python3 ./mssql_init.py
depends_on:
- mssql_0
- mssql_1
- mssql_2
environment:
SA_PASSWORD: SayThanksToSatiaAt2020
volumes:
- ./mssql_init.py:/mssql_init.py
- ./dags/commons/datasources.py:/commons/datasources.py
:
- Vertica
dwh
, - SQL Server,
- - (
mssql_init.py
!)
, , :
$ docker-compose -f docker-compose.yml -f docker-compose.db.yml up --scale worker=3
, , Data Profiling/Ad Hoc Query
:
,
ETL- , : , , , :
with Session(task_name) as session:
print('Load', session.id, 'started')
# Load worflow
...
session.successful = True
session.loaded_rows = 15
from sys import stderr
class Session:
"""ETL workflow session
Example:
with Session(task_name) as session:
print(session.id)
session.successful = True
session.loaded_rows = 15
session.comment = 'Well done'
"""
def __init__(self, connection, task_name):
self.connection = connection
self.connection.autocommit = True
self._task_name = task_name
self._id = None
self.loaded_rows = None
self.successful = None
self.comment = None
def __enter__(self):
return self.open()
def __exit__(self, exc_type, exc_val, exc_tb):
if any(exc_type, exc_val, exc_tb):
self.successful = False
self.comment = f'{exc_type}: {exc_val}\n{exc_tb}'
print(exc_type, exc_val, exc_tb, file=stderr)
self.close()
def __repr__(self):
return (f'<{self.__class__.__name__} '
f'id={self.id} '
f'task_name="{self.task_name}">')
@property
def task_name(self):
return self._task_name
@property
def id(self):
return self._id
def _execute(self, query, *args):
with self.connection.cursor() as cursor:
cursor.execute(query, args)
return cursor.fetchone()[0]
def _create(self):
query = """
CREATE TABLE IF NOT EXISTS sessions (
id SERIAL NOT NULL PRIMARY KEY,
task_name VARCHAR(200) NOT NULL,
started TIMESTAMPTZ NOT NULL DEFAULT current_timestamp,
finished TIMESTAMPTZ DEFAULT current_timestamp,
successful BOOL,
loaded_rows INT,
comment VARCHAR(500)
);
"""
self._execute(query)
def open(self):
query = """
INSERT INTO sessions (task_name, finished)
VALUES (%s, NULL)
RETURNING id;
"""
self._id = self._execute(query, self.task_name)
print(self, 'opened')
return self
def close(self):
if not self._id:
raise SessionClosedError('Session is not open')
query = """
UPDATE sessions
SET
finished = DEFAULT,
successful = %s,
loaded_rows = %s,
comment = %s
WHERE
id = %s
RETURNING id;
"""
self._execute(query, self.successful, self.loaded_rows,
self.comment, self.id)
print(self, 'closed',
', successful: ', self.successful,
', Loaded: ', self.loaded_rows,
', comment:', self.comment)
class SessionError(Exception):
pass
class SessionClosedError(SessionError):
pass
. :
source_conn = MsSqlHook(mssql_conn_id=src_conn_id, schema=src_schema).get_conn()
query = f"""
SELECT
id, start_time, end_time, type, data
FROM dbo.Orders
WHERE
CONVERT(DATE, start_time) = '{dt}'
"""
df = pd.read_sql_query(query, source_conn)
- Airflow
pymssql
- - β .
-
pandas
,DataFrame
β .
{dt}
%s
, ,pandas
pymssql
params: List
,tuple
.
,pymssql
,pyodbc
.
, Airflow :
, . . . --, ?! :
if df.empty:
raise AirflowSkipException('No rows to load')
AirflowSkipException
Airflow, , , . , pink.
:
df['etl_source'] = src_schema
df['etl_id'] = session.id
df['hash_id'] = hash_pandas_object(df[['etl_source', 'id']])
:
- , ,
- ( ),
- β ( ) .
: Vertica. , , β CSV!
# Export data to CSV buffer
buffer = StringIO()
df.to_csv(buffer,
index=False, sep='|', na_rep='NUL', quoting=csv.QUOTE_MINIMAL,
header=False, float_format='%.8f', doublequote=False, escapechar='\\')
buffer.seek(0)
# Push CSV
target_conn = VerticaHook(vertica_conn_id=target_conn_id).get_conn()
copy_stmt = f"""
COPY {target_table}({df.columns.to_list()})
FROM STDIN
DELIMITER '|'
ENCLOSED '"'
ABORT ON ERROR
NULL 'NUL'
"""
cursor = target_conn.cursor()
cursor.copy(copy_stmt, buffer)
-
StringIO
. pandas
DataFrame
CSV
-.- Vertica .
-
copy()
!
, , , :
session.loaded_rows = cursor.rowcount
session.successful = True
.
. :
create_schema_query = f'CREATE SCHEMA IF NOT EXISTS {target_schema};'
create_table_query = f"""
CREATE TABLE IF NOT EXISTS {target_schema}.{target_table} (
id INT,
start_time TIMESTAMP,
end_time TIMESTAMP,
type INT,
data VARCHAR(32),
etl_source VARCHAR(200),
etl_id INT,
hash_id INT PRIMARY KEY
);"""
create_table = VerticaOperator(
task_id='create_target',
sql=[create_schema_query,
create_table_query],
vertica_conn_id=target_conn_id,
task_concurrency=1,
dag=dag)
VerticaOperator()
( , ). , :
for conn_id, schema in sql_server_ds:
load = PythonOperator(
task_id=schema,
python_callable=workflow,
op_kwargs={
'src_conn_id': conn_id,
'src_schema': schema,
'dt': '{{ ds }}',
'target_conn_id': target_conn_id,
'target_table': f'{target_schema}.{target_table}'},
dag=dag)
create_table >> load
β , β , β ,
, ?
, «»
, : ETL-: SSIS Airflow⦠⦠, , , !
- , Apache Airflow β β .
: , β Airflow : , , ( , ).
, -
,
start_date
. , .start_date
. ,start_date
,schedule_interval
β , DAG .
start_date = datetime(2020, 7, 7, 0, 1, 2)
.
:
Task is missing the start_date parameter
, , .
. , ( Airflow ), -, , . . , PostgreSQL 20 5 , .
LocalExecutor. , , . LocalExecutorβ , , , CeleryExecutor. , , Celery , Β«, , !Β»
:
- Connections ,
- SLA Misses , ,
- XCom ( !) .
. ? . Gmail >90k Airflow, - 100 .
: Apache Airflow Pitfails
, , Airflow :
REST API β Experimental, . , / , DAG Run .
CLI β , WebUI, . :
backfill
.
, , : Β« , , 1 13 ! ---!Β». :
airflow backfill -s '2020-01-01' -e '2020-01-13' orders
- :
initdb
,resetdb
,upgradedb
,checkdb
. run
, , . ,LocalExecutor
, Celery-.-
test
, . connections
.
Python API β , , .
/home/airflow/dags
,ipython
? , , :
from airflow import settings from airflow.models import Connection fields = 'conn_id conn_type host port schema login password extra'.split() session = settings.Session() for conn in session.query(Connection).order_by(Connection.conn_id): d = {field: getattr(conn, field) for field in fields} print(conn.conn_id, '=', d)
Airflow. , , API.
, , . β , .
, SQL!WITH last_executions AS ( SELECT task_id, dag_id, execution_date, state, row_number() OVER ( PARTITION BY task_id, dag_id ORDER BY execution_date DESC) AS rn FROM public.task_instance WHERE execution_date > now() - INTERVAL '2' DAY ), failed AS ( SELECT task_id, dag_id, execution_date, state, CASE WHEN rn = row_number() OVER ( PARTITION BY task_id, dag_id ORDER BY execution_date DESC) THEN TRUE END AS last_fail_seq FROM last_executions WHERE state IN ('failed', 'up_for_retry') ) SELECT task_id, dag_id, count(last_fail_seq) AS unsuccessful, count(CASE WHEN last_fail_seq AND state = 'failed' THEN 1 END) AS failed, count(CASE WHEN last_fail_seq AND state = 'up_for_retry' THEN 1 END) AS up_for_retry FROM failed GROUP BY task_id, dag_id HAVING count(last_fail_seq) > 0
Airflow .
- Apache Airflow Documentation β , . , ?
- Best Practices β .
- The Airflow UI β :
- Understanding Apache Airflowβs key concepts β , (!) - .
- Tianlong's Blog β A Guide On How To Build An Airflow Server/Cluster β Airflow-.
- Running Apache Airflow At Lyft β , , .
- How Apache Airflow Distributes Jobs on Celery workers β Celery.
- DAG Writing Best Practices in Apache Airflow β , ID , , .
- Managing Dependencies in Apache Airflow β Trigger Rule, .
- Airflow: When Your DAG is Far Behind The Schedule β Β«, Β» , .
- Useful SQL queries for Apache Airflow β SQL- Airflow.
- Get started developing workflows with Apache Airflow β .
- Building the Fetchr Data Science Infra on AWS with Presto and Airflow β AWS Data Science.
- 7 Common Errors to Check when Debugging Airflow DAGs β ( - - ).
- Store and access password using Apache Airflow β , , Connections.
- The Zen of Python and Apache Airflow β DAG, , , .
- Airflow: Lesser Known Tips, Tricks, and Best Practises β
default arguments
params
, Variables Connections. - Profiling the Airflow Scheduler β , Airflow 2.0.
- Apache Airflow with 3 Celery workers in docker-compose β
docker-compose
. - 4 Templating Tasks Using the Airflow Context β .
- Error Notifications in Airflow β Slack.
- Airflow Workshop: DAGβ β , XCom.
, :
- Macros reference β .
- Common Pitfalls β Airflow β .
- puckel / docker-airflow: Docker Apache Airflow -
docker-compose
untuk eksperimen, debugging, dan lainnya. - python-telegram-bot / python-telegram-bot: Kami telah membuatkan Anda pembungkus yang tidak dapat Anda tolak - pembungkus Python untuk API REST Telegram.