Fetch adalah pustaka Scala untuk mengatur akses ke data dari sistem file, database, layanan web, dan sumber lainnya, yang datanya dapat diperoleh dengan pengenal unik. Perpustakaan ini ditulis dalam gaya fungsional dan didasarkan pada Efek Kucing dan Kucing. Didesain untuk komposisi dan pengoptimalan kueri ke berbagai sumber data. Ini memungkinkan Anda untuk:
- meminta data dari berbagai sumber secara paralel;
- meminta data dari satu sumber secara paralel;
- menggabungkan permintaan ke satu sumber menjadi satu permintaan;
- deduplikasi kueri di setiap situasi yang terdaftar;
- hasil kueri cache.
Untuk melakukannya, pustaka menyediakan alat yang memungkinkan Anda menulis kode bisnis bersih tanpa konstruksi tingkat rendah untuk mengimplementasikan pengoptimalan yang terdaftar.
Contoh menggunakan versi terbaru Ambil pada saat penulisan ini - 1.3.0.
Sumber data di Fetch
Untuk menerapkan akses ke sumber apa pun melalui Ambil, Anda perlu menerapkan:
- deskripsi sumber data (sifat
Data[I, A]
); - metode untuk memperoleh data dari sumber (sifat
DataSource[F[_], I, A]
).
DataSource[F[_], I, A]
( I
β , - : , ID ; A
β , F
β ) :
/**
* A `DataSource` is the recipe for fetching a certain identity `I`, which yields
* results of type `A` performing an effect of type `F[_]`.
*/
trait DataSource[F[_], I, A] {
def data: Data[I, A]
implicit def CF: Concurrent[F]
/** Fetch one identity, returning a None if it wasn't found.
*/
def fetch(id: I): F[Option[A]]
/** Fetch many identities, returning a mapping from identities to results. If an
* identity wasn't found, it won't appear in the keys.
*/
def batch(ids: NonEmptyList[I]): F[Map[I, A]] =
FetchExecution.parallel(
ids.map(id => fetch(id).tupleLeft(id))
).map(_.collect { case (id, Some(x)) => id -> x }.toMap)
def maxBatchSize: Option[Int] = None
def batchExecution: BatchExecution = InParallel
}
data: Data[I, A]
β Data[I,A]
, . CF
β «» , β Concurrent
. fetch
β ID. batch
β , ID . fetch
β ID . : , , .
Fetch:
class ListData(val list: List[String]) extends Data[Int, String] {
override def name: String = "My List of Data"
}
class ListDataSource(list: ListData)(implicit cs: ContextShift[IO])
extends DataSource[IO, Int, String]
with LazyLogging {
override def data: ListData = list
/*implicit Stack overflow, */
override def CF: Concurrent[IO] = Concurrent[IO]
override def fetch(id: Int): IO[Option[String]] =
CF.delay {
logger.info(s"Processing element from index $id")
data.list.lift(id)
}
}
: DataSource
- Data
. :
class ListSource(list: List[String])(implicit cf: ContextShift[IO]) extends Data[Int, String] with LazyLogging {
override def name: String = "My List of Data"
private def instance: ListSource = this
def source = new DataSource[IO, Int, String] {
override def data: Data[Int, String] = instance
override def CF: Concurrent[IO] = Concurrent[IO]
override def fetch(id: Int): IO[Option[String]] =
CF.delay {
logger.info(s"Processing element from index $id")
list.lift(id)
}
}
}
fetch
. . Fetch , .
DataSource
. Fetch
. β - "" . . Fetch
Fetch.run
( run , ). ID . , F
, Concurrent[F]
. :
val list = List("a", "b", "c")
val data: ListSource = new ListSource(list)
val source: DataSource[IO, Int, String] = data.source
val fetchDataPlan: Fetch[IO, String] = Fetch(1, source)
val fetchData: IO[String] = Fetch.run(fetchDataPlan)
val dataCalculated: String = fetchData.unsafeRunSync // b
, ID , .
:
object Example extends App {
implicit val ec: ExecutionContext = global
implicit val cs: ContextShift[IO] = IO.contextShift(ec) // Fetch.run ListDataSource
implicit val timer: Timer[IO] = IO.timer(ec) // Fetch.run
val list = List("a", "b", "c")
val data = new ListSource(list)
val source = data.source
Fetch.run(Fetch(0, source)).unsafeRunSync
// INFO ListDataSource - Processing element from index 0
Fetch.run(Fetch(1, source)).unsafeRunSync
// INFO ListDataSource - Processing element from index 1
Fetch.run(Fetch(2, source)).unsafeRunSync
// INFO ListDataSource - Processing element from index 2
Fetch.run(Fetch(3, source)).unsafeRunSync
// INFO ListDataSource - Processing element from index 3
// Exception in thread "main" fetch.package$MissingIdentity
}
, data.list.lift(id)
fetch
. , fetch
None
. , Option
Option : DataSource[F[_], I, A]
. Option , Fetch
apply
, optional
:
Fetch.run(Fetch.optional(3, source)).unsafeRunSync // None
, :
val fApply: Fetch[IO, String] = Fetch(3, source)
val fOptional: Fetch[IO, Option[String]] = Fetch.optional(3, source)
- Data
, Fetch
. , , optional
:
def fetchElem(id: Int) = Fetch.optional(id, source)
fetchElem
ListSource
:
Fetch.run(data.fetchElem(0)).unsafeRunSync // INFO app.ListDataSource - Processing element from index 0
Fetch.run(data.fetchElem(1)).unsafeRunSync // INFO app.ListDataSource - Processing element from index 1
Fetch.run(data.fetchElem(2)).unsafeRunSync // INFO app.ListDataSource - Processing element from index 2
println(Fetch.run(data.fetchElem(2)).unsafeRunSync) // Some(c)
println(Fetch.run(data.fetchElem(3)).unsafeRunSync) // None
Fetch Β« Β»:
def fetch(id: Int): Option[String] = {
val run = Fetch.run(data.fetchElem(id))
run.unsafeRunSync
}
fetch(1) // INFO app.ListDataSource - Processing element from index 1
fetch(1) // INFO app.ListDataSource - Processing element from index 1
fetch(1) // INFO app.ListDataSource - Processing element from index 1
Fetch DataCache[F[_]]
. β InMemoryCache[F[_]: Monad](state: Map[(Data[Any, Any], DataSourceId), DataSourceResult])
. - from
β ; empty
β :
def from[F[_]: Monad, I, A](results: ((Data[I, A], I), A)*): InMemoryCache[F]
def empty[F[_]: Monad]: InMemoryCache[F]
, , Map[(Data[Any, Any], DataSourceId), DataSourceResult]
. :
final class DataSourceId(val id: Any) extends AnyVal
final class DataSourceResult(val result: Any) extends AnyVal
, β (Data[Any, Any], DataSourceId)
. ID . β DataSourceResult
. . , Fetch . , β Any
. . InMemoryCache
:
def lookup[I, A](i: I, data: Data[I, A]): F[Option[A]] =
Applicative[F].pure(
state
.get((data.asInstanceOf[Data[Any, Any]], new DataSourceId(i)))
.map(_.result.asInstanceOf[A])
)
, Data
β . Data
A
, asInstanceOf[A]
Any
. Map updated
, .
, , Map Scala β . - .
from
:
val cacheF: DataCache[IO] = InMemoryCache.from((data, 1) -> "b", (data, 2) -> "c")
Fetch.run(data.fetchElem(1), cacheF).unsafeRunSync //
Fetch.run(data.fetchElem(1), cacheF).unsafeRunSync //
Fetch.run(data.fetchElem(1), cacheF).unsafeRunSync
Fetch.run(data.fetchElem(1), cacheF).unsafeRunSync
Fetch.run(data.fetchElem(0), cacheF).unsafeRunSync
Fetch.run(data.fetchElem(0), cacheF).unsafeRunSync
// INFO app.ListDataSource - Processing element from index 0
// INFO app.ListDataSource - Processing element from index 0
, , . , - β Map . , . Fetch.runCache
, ( , )
:
var cache: DataCache[IO] = InMemoryCache.empty
def cachedRun(id: Int): Option[String] = {
val (c, r) = Fetch.runCache(Fetch.optional(id, source), cache).unsafeRunSync
cache = c //
r
}
cachedRun(1)
cachedRun(1)
cachedRun(2)
cachedRun(2)
cachedRun(4)
cachedRun(4)
// INFO app.ListDataSource - Processing element from index 1
// INFO app.ListDataSource - Processing element from index 2
// INFO app.ListDataSource - Processing element from index 4
// INFO app.ListDataSource - Processing element from index 4
, . β .
: Caffeine
DataCache
. Fetch. DataCache
Java- Caffeine, β Scala Scaffeine:
class ScaffeineCache extends DataCache[IO] with LazyLogging {
private val cache =
Scaffeine()
.recordStats()
.expireAfterWrite(1.hour)
.maximumSize(500)
.build[(Data[Any, Any], Any), Any]()
override def lookup[I, A](i: I, data: Data[I, A]): IO[Option[A]] = IO {
cache
.getIfPresent(data.asInstanceOf[Data[Any, Any]] -> i)
.map { any =>
val correct = any.asInstanceOf[A]
logger.info(s"From cache: $i")
correct
}
}
override def insert[I, A](i: I, v: A, data: Data[I, A]): IO[DataCache[IO]] = {
cache.put(data.asInstanceOf[Data[Any, Any]] -> i, v) // Unit
IO(this)
}
}
, InMemoryCache
. Scaffeine β Any
: build[(Data[Any, Any], Any), Any]()
. asInstanceOf
:
val list = List("a", "b", "c")
val listSource = new ListSource(list)
val source = listSource.source
val randomSource = new RandomSource()
val cache = new ScaffeineCache()
/** */
Fetch.run(Fetch(1, source)).unsafeRunSync // Processing element from index 1
Fetch.run(Fetch(1, source)).unsafeRunSync // Processing element from index 1
println()
/** */
Fetch.run(Fetch(1, source), cache).unsafeRunSync // Processing element from index 1
Fetch.run(Fetch(1, source), cache).unsafeRunSync // From cache: 1
Fetch.run(Fetch("a", source), cache).unsafeRunSync // type mismatch
/** */
Fetch.run(randomSource.fetchInt(2), cache).unsafeRunSync // Getting next random by max 2
Fetch.run(randomSource.fetchInt(2), cache).unsafeRunSync // From cache: 2
:
- ID ( asInstanceOf) type mismatch Fetch ID Source, ;
- ;
- Caffeine, β . , DataCache insert.
Fetch Scala Cats. β List[Fetch[_,_]]
Fetch[_, List[_]]
, Fetch.run
. Fetch: , , , . Fetch , Fetch
Fetch.run
β , .
. :
val t1: IO[(String, String)] = for {
a <- Fetch.run(Fetch(1, source))
b <- Fetch.run(Fetch(1, source))
} yield (a, b)
for : Fetch[_, List[_]]
, Fetch
run
, . for :
val f1: Fetch[IO, (String, String)] = for {
a <- Fetch(1, source)
b <- Fetch(1, source)
} yield (a,b)
val t2: IO[(String, String)] = Fetch.run(f1)
Fetch . , Fetch.run
:
- ;
- β ;
- β .
DataSource
batch
.
Cats. , sequence List[F[_]]
F[List[_]]
. traverse : List[] `F[List[]]`. , tupled :
val f3: List[Fetch[IO, String]] = List(
Fetch(1, source),
Fetch(2, source),
Fetch(2, source)
)
val f31: Fetch[IO, List[String]] = f3.sequence
val t3: IO[List[String]] = Fetch.run(f31)
val f4: List[Int] = List(
1,
2,
2
)
val f41: Fetch[IO, List[String]] = f4.traverse(Fetch(_, source))
val t4: IO[List[String]] = Fetch.run(f41)
val f5: (Fetch[IO, String], Fetch[IO, String]) = (Fetch(1, source), Fetch(2, source))
val f51: Fetch[IO, (String, String)] = f5.tupled
val t5: IO[(String, String)] = Fetch.run(f51)
val f6: (Int, Int) = (1, 2)
val f61: Fetch[IO, (Int, String)] = f6.traverse(Fetch(_, source))
flatMap
:
val f0: Fetch[IO, String] = Fetch(1, source).flatMap(_ => Fetch(1, source))
val t0: IO[String] = Fetch.run(f0)
, , Fetch
. Cats. Fetch β , . , , .
(Batching)
Fetch . :
import fetch.fetchM // Fetch Cats
val tuple: Fetch[IO, (Option[String], Option[String])] = (data.fetchElem(0), data.fetchElem(1)).tupled
Fetch.run(tuple).unsafeRunSync() // (Some(a),Some(b))
batch
DataSource
fetch
. . , SQL- .
batch
ListSource
:
override def batch(ids: NonEmptyList[Int]): IO[Map[Int, String]] = {
logger.info(s"IDs fetching in batch: $ids")
super.batch(ids)
}
traverse
:
import fetch.fetchM
def findMany: Fetch[IO, List[Option[String]]] =
List(0, 1, 2, 3, 4, 5).traverse(data.fetchElem)
Fetch.run(findMany).unsafeRunSync
// INFO app.ListSource - IDs fetching in batch: NonEmptyList(0, 5, 1, 2, 3, 4)
, maxBatchSize
:
override def maxBatchSize: Option[Int] = 2.some // defaults to None
// INFO app.ListSource - IDs fetching in batch: NonEmptyList(0, 5)
// INFO app.ListSource - IDs fetching in batch: NonEmptyList(1, 2)
// INFO app.ListSource - IDs fetching in batch: NonEmptyList(3, 4)
, . batchExecution
:
override def batchExecution: BatchExecution = Sequentially // defaults to `InParallel`
Fetch.run
. , , Fetch .
, , - . ID, . Fetch , :
class RandomSource(implicit cf: ContextShift[IO]) extends Data[Int, Int] with LazyLogging {
override def name: String = "Random numbers generator"
private def instance: RandomSource = this
def source: DataSource[IO, Int, Int] = new DataSource[IO, Int, Int] {
override def data: Data[Int, Int] = instance
override def CF: Concurrent[IO] = Concurrent[IO]
override def fetch(max: Int): IO[Option[Int]] =
CF.delay {
logger.info(s"Getting next random by max $max")
scala.util.Random.nextInt(max).some
}
}
}
Fetch listSource
:
val listSource = new ListSource(List("a", "b", "c"))
val randomSource = new RandomSource()
def fetchMulti: Fetch[IO, (Int, String)] =
for {
rnd <- Fetch(3, randomSource.source) // Fetch[IO, Int]
char <- Fetch(rnd, listSource.source) // Fetch[IO, String]
} yield (rnd, char)
println(Fetch.run(fetchMulti).unsafeRunSync) // , (0,a)
, . : , , -, . - .
, . , for
flatMap
, . sequence
traverse
. , , sequence
traverse
. tupled
, . , .
, , . β ID , . .
:
val list = List("a", "b", "c", "d", "e", "f", "g", "h", "i")
val data = new ListSource(list, 2.some)
val tupleD: Fetch[IO, (Option[String], Option[String])] = (data.fetchElem(0), data.fetchElem(0)).tupled
Fetch.run(tupleD).unsafeRunSync()
//INFO app.sources.ListSource - Processing element from index 0
//(Some(a),Some(a))
:
def fetchMultiD: Fetch[IO, (Int, String, Int, String)] =
for {
rnd1 <- Fetch(3, randomSource.source) // Fetch[IO, Int]
char1 <- Fetch(rnd1, listSource.source) // Fetch[IO, String]
rnd2 <- Fetch(3, randomSource.source) // Fetch[IO, Int]
char2 <- Fetch(rnd2, listSource.source) // Fetch[IO, String]
} yield (rnd1, char1, rnd2, char2)
println(Fetch.run(fetchMultiD).unsafeRunSync)
//18:43:11.875 [scala-execution-context-global-14] INFO app.sources.RandomSource - Getting next random by max 3
//18:43:11.876 [scala-execution-context-global-13] INFO app.sources.ListSource - Processing element from index 1
//(1,b,1,b)
Fetch :
-
FetchException
; -
MissingIdentity
ID; -
UnhandledException
.
Fetch Option
, , Either
:
// val i: String = Fetch.run(Fetch(5, data.source)).unsafeRunSync // Exception in thread "main" fetch.package$MissingIdentity
val i: Either[Throwable, String] = Fetch.run(Fetch(5, data.source)).attempt.unsafeRunSync // Left(fetch.package$MissingIdentity)
Fetch
Fetch Fetch.runLog
, FetchLog
. fetch-debug
describe
, Throwable
Log
.
throwable
:
// libraryDependencies += "com.47deg" %% "fetch-debug" % "1.3.0"
import fetch.debug.describe
val t: Either[Throwable, (Log, String)] = Fetch.runLog(Fetch(5, data.source)).attempt.unsafeRunSync
println(t.fold(describe, identity))
// [ERROR] Identity with id `5` for data source `My List of Data` not found, fetch interrupted after 1 rounds
// Fetch execution 0.00 seconds
//
// [Round 1] 0.00 seconds
// [Fetch one] From `My List of Data` with id 5 0.00 seconds
Fetch (>>
Cats flatMap(_ => ...))
:
object DebugExample extends App with ContextEntities {
val list = List("a", "b", "c", "d", "e", "f", "g", "h")
val listData = new ListSource(list)
val listSource: DataSource[IO, Int, String] = listData.source
val randomSource = new RandomSource().source
val cacheF: DataCache[IO] = InMemoryCache.from((listData, 1) -> "b")
//
val cached = Fetch(1, listSource)
// #1,
val notCached = Fetch(2, listSource)
// #2
val random = Fetch(10, randomSource)
// #3
val batched: Fetch[IO, (String, String)] = (Fetch(3, listSource), Fetch(4, listSource)).tupled
// #4
val combined = (Fetch(5, listSource), Fetch(150, randomSource)).tupled
/** End of fetches */
val complicatedFetch: Fetch[IO, (String, Int)] = cached >> notCached >> random >> notCached >> batched >> combined
val result: IO[(Log, (String, Int))] = Fetch.runLog(complicatedFetch, cacheF)
val tuple: (Log, (String, Int)) = result.unsafeRunSync()
println(tuple._2) // (f,17)
println(describe(tuple._1))
println(tuple._1)
//Fetch execution 0.11 seconds
//
// [Round 1] 0.06 seconds
// [Fetch one] From `My List of Data` with id 2 0.06 seconds
// [Round 2] 0.00 seconds
// [Fetch one] From `Random numbers generator` with id 10 0.00 seconds
// [Round 3] 0.01 seconds
// [Batch] From `My List of Data` with ids List(3, 4) 0.01 seconds
// [Round 4] 0.00 seconds
// [Fetch one] From `Random numbers generator` with id 150 0.00 seconds
// [Fetch one] From `My List of Data` with id 5 0.00 seconds
// raw:
// FetchLog(Queue(Round(List(Request(FetchOne(2,app.sources.ListSource@ea6147e),10767139,10767203))), Round(List(Request(FetchOne(10,app.sources.RandomSource@58b31054),10767211,10767213))), Round(List(Request(Batch(NonEmptyList(3, 4),app.sources.ListSource@ea6147e),10767234,10767242))), Round(List(Request(FetchOne(150,app.sources.RandomSource@58b31054),10767252,10767252), Request(FetchOne(5,app.sources.ListSource@ea6147e),10767252,10767252)))))
}
:
- cached , ;
- notCached . C ;
- batch ;
- .
. >>,
. 3 4 tupled
, . β , . β , .
:
, , . , :
- ID - ;
- ;
- ID;
- .
( ):
/*Model*/
type DocumentId = String
type PersonId = String
case class FtsResponse(ids: List[DocumentId])
case class SimilarityItem(id: DocumentId, similarity: Double)
case class DocumentInfo(id: DocumentId, info: String, authors: List[PersonId])
case class Person(id: PersonId, fullTitle: String)
/*Response*/
case class DocumentSearchResponse(
items: List[DocumentSearchItem]
)
case class DocumentItem(id: DocumentId, info: Option[String], authors: List[Person])
case class DocumentSimilarItem(
item: DocumentItem,
similarity: Double
)
case class DocumentSearchItem(
item: DocumentItem,
similar: List[DocumentSimilarItem]
)
class DocumentSearchExample(
fts: Fts[IO],
documentInfoRepo: DocumentInfoRepo[IO],
vectorSearch: VectorSearch[IO],
personRepo: PersonRepo[IO]
)(
implicit cs: ContextShift[IO]
) {
val infoSource = new DocumentInfoSource(documentInfoRepo, 16.some)
val personSource = new PersonSource(personRepo, 16.some)
val similarSource = new SimilarDocumentSource(vectorSearch, 16.some)
def documentItemFetch(id: DocumentId): Fetch[IO, DocumentItem] =
for {
infoOpt <- infoSource.fetchElem(id)
p <- infoOpt.traverse(i => i.authors.traverse(personSource.fetchElem).map(_.flatten))
} yield DocumentItem(id, infoOpt.map(_.info), p.getOrElse(List.empty[Person]))
def fetchSimilarItems(id: DocumentId): Fetch[IO, List[DocumentSimilarItem]] =
similarSource
.fetchElem(id)
.map(_.getOrElse(List.empty[SimilarityItem]))
.flatMap {
_.traverse { si =>
documentItemFetch(si.id).map { di =>
DocumentSimilarItem(di, si.similarity)
}
}
}
def searchDocumentFetch(query: String): Fetch[IO, DocumentSearchResponse] =
for {
docs <- Fetch.liftF(fts.search(query))
items <- docs.ids.traverse { id =>
(documentItemFetch(id), fetchSimilarItems(id)).tupled.map(r => DocumentSearchItem(r._1, r._2))
}
} yield DocumentSearchResponse(items)
}
DocumentSearchExample
. , . , Doobie. Fetch β DocumentInfoSource
, PersonSource
SimilarDocumentSource
, .
searchDocumentFetch
query
. , , Fetch. search
:
def search(query: String): F[FtsResponse]
liftF
Fetch[F, FtsResponse]
, for
Fetch.
ID ID . Fetch tupled
, , . , DocumentSearchItem
.
fetchSimilarItems ID similarSource
, β documentItemFetch
. . DocumentInfo
ID, , .
Fetch[IO, Fetch[...]]
map flatMap:
similarSource
.fetchElem(id)
.map(_.getOrElse(List.empty[SimilarityItem])) // Fetch
.flatMap {
_.traverse { si =>
documentItemFetch(si.id).map { di => // Fetch
DocumentSimilarItem(di, si.similarity)
}
}
}
:
private val docInfo = Map(
"1" -> DocumentInfo("1", "Document 1", List(1)),
"2" -> DocumentInfo("2", "Document 2", List(1,2)),
"3" -> DocumentInfo("3", "Document 3", List(3,1)),
"4" -> DocumentInfo("4", "Document 4", List(2,1)),
"5" -> DocumentInfo("5", "Document 5", List(2)),
"6" -> DocumentInfo("6", "Document 6", List(1,3))
)
private val similars = Map(
"1" -> List(SimilarityItem("2", 0.7), SimilarityItem("3", 0.6)),
"2" -> List(SimilarityItem("1", 0.7)),
"3" -> List(SimilarityItem("1", 0.6)),
"4" -> List(),
"5" -> List(SimilarityItem("6", 0.5)),
"6" -> List(SimilarityItem("5", 0.5))
)
private val persons = Map(
1 -> Person(1, "Rick Deckard"),
2 -> Person(2, "Roy Batty"),
3 -> Person(3, "Joe")
)
, . , :
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 2. It is: Some(List(1))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 4. It is: None
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 3. It is: Some(List(1))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 1. It is: Some(List(2, 3))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 6. It is: Some(List(5))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 5. It is: Some(List(6))
INFO app.searchfetchproto.source.DocumentInfoSource - Document IDs fetching in batch: NonEmptyList(4, 5, 2, 3, 6, 1)
INFO app.searchfetchproto.source.PersonSource - Person IDs fetching in batch: NonEmptyList(1, 2, 3)
, , batch
:
[Round 1] 0.12 seconds
[Batch] From `Similar Document Source` with ids List(4, 5, 2, 3, 6, 1) 0.06 seconds
[Batch] From `Document Info Source` with ids List(4, 5, 2, 3, 6, 1) 0.12 seconds
[Round 2] 0.00 seconds
[Batch] From `Persons source` with ids List(1, 2, 3) 0.00 seconds
searchDocumentFetch
:
(documentItemFetch(id), fetchSimilarItems(id)).tupled
tupled
. , fetchSimilarItems
documentItemFetch
, , :
[Batch] From `Similar Document Source` with ids List(4, 5, 2, 3, 6, 1) 0.06 seconds
[Batch] From `Document Info Source` with ids List(4, 5, 2, 3, 6, 1) 0.12 seconds
, , . . (, Thread.sleep(100)
), :
INFO app.searchfetchproto.source.DocumentInfoSource - Document IDs fetching in batch: NonEmptyList(4, 5, 2, 3, 6, 1)
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 4. It is: None
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 5. It is: Some(List(6))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 3. It is: Some(List(1))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 2. It is: Some(List(1))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 6. It is: Some(List(5))
INFO app.searchfetchproto.source.SimilarDocumentSource - Fetching similar documents for ID: 1. It is: Some(List(2, 3))
INFO app.searchfetchproto.source.DocumentInfoSource - Document IDs fetching in batch: NonEmptyList(5, 2, 3, 6, 1)
[Round 1] 0.13 seconds
[Batch] From `Similar Document Source` with ids List(4, 5, 2, 3, 6, 1) 0.13 seconds
[Batch] From `Document Info Source` with ids List(4, 5, 2, 3, 6, 1) 0.08 seconds
[Round 2] 0.00 seconds
[Batch] From `Document Info Source` with ids List(5, 2, 3, 6, 1) 0.00 seconds
[Batch] From `Persons source` with ids List(1, 2, 3) 0.00 seconds
, fetchSimilarItems
. , .
Fetch . , , , . Cats, Fetch Scala Doobie fs2.
- ZQuery β , , ZIO Cats;
- Clump β , Fetch, 2015;
- Haxl β Haskell.
ZQuery Fetch β βThere is no Fork: an Abstraction for Efficient, Concurrent, and Concise Data Accessβ (https://simonmar.github.io/bib/papers/haxl-icfp14.pdf), ( ) .